\qquad

1. Complete the end behavior statements for the polynomial: $f(x)=-x^{5}+4 x^{3}+5 x+2$

$$
f(x) \rightarrow \quad \text { as } x \rightarrow+\infty ; f(x) \rightarrow \quad \text { as } x \rightarrow-\infty
$$

2. True or False: The graph of a polynomial function will cross the x axis at the imaginary roots.
3. Write a polynomial function, in factored form, for a polynomial with zeros: $-3, \frac{1}{2}, 5$
4. Find all the zeros of the polynomial: $\quad f(x)=x^{4}+2 x^{3}-13 x^{2}-14 x+24$
5. Given the factored form of the polynomial, identify zeros, including multiplicity: $P(x)=(x-5)(x+1)(x+3)^{2}$
6. Given the factored form of the polynomial, identify the zeros, including multiplicity: $P(x)=x(2 x-1)(x-6)$
7. Given $(x+3)$ as a factor of the polynomial $f(x)=5 x^{3}+9 x^{2}-26 x-24$, find all the zeros of the polynomial.
8. Given $(x+9)$ is a factor of the polynomial $f(x)=3 x^{3}+38 x^{2}+109 x+90$, find the remaining factors.
9. Given $x=1$ is a zero of the polynomial, find the remaining zeros: $f(x)=x^{3}-2 x^{2}-5 x+6$
10. Determine whether $(x-2)$ is a factor of the given polynomial: $2 x^{4}+7 x^{3}-4 x^{2}-27 x-18$

Circle: $(x-2)$ IS/ IS NOT a factor of the given polynomial.

