Monday

Which of the following is equivalent to

$$\frac{\sin^2\theta + \cos^2\theta}{\sec^2\theta}?$$

$$\bigcirc$$
 $\cos^2\theta$

$$\bigcirc$$
 $\sin^2\theta$

$$\bigcirc$$
 tan² θ

$$\bigcirc$$
 $\sin^2\theta + 1$


Tuesday

STANDARDIZED TEST PRACTICE Identify the equation of the graphed function.

B
$$y = \frac{1}{3}\cos 2\theta$$

$$\bigcirc y = 3\cos\frac{1}{2}\theta$$

(A)
$$y = 3\cos 2\theta$$
 (B) $y = \frac{1}{3}\cos 2\theta$
(C) $y = 3\cos \frac{1}{2}\theta$ (D) $y = \frac{1}{3}\cos \frac{1}{2}\theta$

Wednesday

State the vertical shift, amplitude, period, and phase shift of each function. Then graph the function.

$$y = 4\cos\left[\frac{1}{2}(\theta + 30^{\circ})\right] - 1$$

Thursday

. Write a polynomial function to model the set of data. (Lesson 4-8)

x	-10	-7	-4	-1	2	5	8	-11	14
f(x)	-15	-9.2	-6.9	-3	-0.1	2	1.1	-2.3	-4.5

Friday

Find the rectangular coordinates of each point.

a.
$$P\left(5, \frac{\pi}{3}\right)$$