Use the Rational Zero Theorem to answer: {Odds}

List all possible rational zeros of each function. Then determine which, if any, are zeros. (Examples 1 and 2)

1.
$$g(x) = x^4 - 6x^3 - 31x^2 + 216x - 180$$

2.
$$f(x) = 4x^3 - 24x^2 - x + 6$$

3.
$$g(x) = x^4 - x^3 - 31x^2 + x + 30$$

4.
$$g(x) = -4x^4 + 35x^3 - 87x^2 + 56x + 20$$

5.
$$h(x) = 6x^4 + 13x^3 - 67x^2 - 156x - 60$$

6.
$$f(x) = 18x^4 + 12x^3 + 56x^2 + 48x - 64$$

7.
$$h(x) = x^5 - 11x^4 + 49x^3 - 147x^2 + 360x - 432$$

8.
$$g(x) = 8x^5 + 18x^4 - 5x^3 - 72x^2 - 162x + 45$$

Use Descarte's Rule of Signs to answer: {Odds}

Describe the possible real zeros of each function. (E

26.
$$f(x) = -2x^3 - 3x^2 + 4x + 7$$
 26–31. See

27.
$$f(x) = 10x^4 - 3x^3 + 8x^2 - 4x - 8$$

28.
$$f(x) = -3x^4 - 5x^3 + 4x^2 + 2x - 6$$

29.
$$f(x) = 12x^4 + 6x^3 + 3x^2 - 2x + 12$$

30.
$$g(x) = 4x^5 + 3x^4 + 9x^3 - 8x^2 + 16x - 24$$

31.
$$h(x) = -4x^5 + x^4 - 8x^3 - 24x^2 + 64x - 124$$

{Odds}

Write a polynomial function of least degree with real coefficients in standard form that has the given zeros. (Example 6) 32–41. See margin.

32. 3,
$$-4$$
, 6, -1

33.
$$-2$$
, -4 , -3 , 5

34.
$$-5, 3, 4+i$$

35.
$$-1, 8, 6 - i$$

36.
$$2\sqrt{5}$$
, $-2\sqrt{5}$, -3 , 7

37.
$$-5$$
, 2, $4-\sqrt{3}$, $4+\sqrt{3}$

38.
$$\sqrt{7}$$
, $-\sqrt{7}$, $4i$

39.
$$\sqrt{6}$$
, $-\sqrt{6}$, $3-4i$

40.
$$2 + \sqrt{3}$$
, $2 - \sqrt{3}$, $4 + 5i$ **41.** $6 - \sqrt{5}$, $6 + \sqrt{5}$, $8 - 3i$

41.
$$6 - \sqrt{5}$$
, $6 + \sqrt{5}$, $8 - 36$