Use the Rational Zero Theorem to answer: \{Odds\}

List all possible rational zeros of each function. Then determine which, if any, are zeros. (Examples 1 and 2)

1. $g(x)=x^{4}-6 x^{3}-31 x^{2}+216 x-180$
2. $f(x)=4 x^{3}-24 x^{2}-x+6$
3. $g(x)=x^{4}-x^{3}-31 x^{2}+x+30$
4. $g(x)=-4 x^{4}+35 x^{3}-87 x^{2}+56 x+20$
5. $h(x)=6 x^{4}+13 x^{3}-67 x^{2}-156 x-60$
6. $f(x)=18 x^{4}+12 x^{3}+56 x^{2}+48 x-64$
7. $h(x)=x^{5}-11 x^{4}+49 x^{3}-147 x^{2}+360 x-432$
8. $g(x)=8 x^{5}+18 x^{4}-5 x^{3}-72 x^{2}-162 x+45$

Use Descarte's Rule of Signs to answer: \{Odds\}

Describe the possible real zeros of each function. (E
26. $f(x)=-2 x^{3}-3 x^{2}+4 x+7 \quad$ 26-31. See I
27. $f(x)=10 x^{4}-3 x^{3}+8 x^{2}-4 x-8$
28. $f(x)=-3 x^{4}-5 x^{3}+4 x^{2}+2 x-6$
29. $f(x)=12 x^{4}+6 x^{3}+3 x^{2}-2 x+12$
30. $g(x)=4 x^{5}+3 x^{4}+9 x^{3}-8 x^{2}+16 x-24$
31. $h(x)=-4 x^{5}+x^{4}-8 x^{3}-24 x^{2}+64 x-124$

\{Odds\}

Write a polynomial function of least degree with real coefficients in standard form that has the given zeros.
(Example 6) 32-41. See margin.
32. $3,-4,6,-1$
33. $-2,-4,-3,5$
34. $-5,3,4+i$
35. $-1,8,6-i$
36. $2 \sqrt{5},-2 \sqrt{5},-3,7$
37. $-5,2,4-\sqrt{3}, 4+\sqrt{3}$
38. $\sqrt{7},-\sqrt{7}, 4 i$
39. $\sqrt{6},-\sqrt{6}, 3-4 i$
40. $2+\sqrt{3}, 2-\sqrt{3}, 4+5 i$
41. $6-\sqrt{5}, 6+\sqrt{5}, 8-3 i$

