1. Factor: $x^{2}-13 x-30$
2. Find the solutions using the quadratic formula: $9 x^{2}-4 x=-1$
3. Simplify: $9(5 x-3 y)-11(4 x+1)$
4. Simplify: $\left(64 x^{-3} y^{9}\right)^{-\frac{2}{3}}$
5. Simplify: $\frac{6}{4-i}$
6. Simplify: $\left(\frac{196 m^{-8}}{9 n^{2}}\right)^{\frac{1}{2}}$
7. Simplify: $(7-5 i)(4+7 i)$
8. Simplify: $7(6-7 i)+3(2+3 i)$
9. Simplify: $(11+19 i)-(3-16 i)-8 i$
10. A school is mapped on a coordinate plane. The cafeteria is located at point $C(4,1)$. The Library is located at point $L(-3,-5)$. The Principal's Office is located at $P(-1,5)$. What is the difference between the distance from $C L$ to $L P$?
11. Convert from degrees to radians: 335°
12. Convert from radians to degrees: $\frac{9 \pi}{4}$
13. The area of a circle is 225π square inches. Find the area of the sector whose central angle is 45°.
14. Find the arc length of $C D$:

15. 2000 freshman at NC State took a biology exam. The scores were normally distributed with a mean of 84 and a standard deviation of five. Approximately how many students scored between a 79 and 89 ?
16. Use the Unit Circle to find the exact value: $\sin \frac{3 \pi}{2}$

$$
x+y>-2
$$

17. Fill in the blank: Parallel lines have \qquad slopes.
18. Graph these lines on the coordinate plane. Shade the solution region:
19. Find the solution using a system of equations:
$3 x-y \geq-2$

Last year the volleyball team paid $\$ 5$ per pair for socks and $\$ 17$ per pair for shorts on a total purchase of $\$ 315$. This year they spent $\$ 342$ to buy the same number of pairs of socks and shorts because the socks now cost $\$ 6$ a dair and the shorts cost $\$ 18$.
How many pairs of socks and shorts did the team buy each year?
20. Identify the ordered pair that represents the vertex of this quadratic: $f(x)=-2 x^{2}+4 x-7$
21. Identify the equation that represents the axis of symmetry for this quadratic: $f(x)=x^{2}-12 x+19$
22. Identify the vertex: $f(x)=-9(x+1)^{2}+8$
23. Divide using synthetic division: $x^{4}-3 x^{3}-11 x^{2}+3 x+10 \div(x-5)$
24. Determine if the given binomial is a factor of the polynomial in question \#23
25. Find the remainder: $3 m^{5}+m-1 \div(m+1)$
26. Write a quadratic equation with the given roots: $-\frac{1}{3}, 2$
27. Find a value of c that makes the trinomial a perfect square: $x^{2}-20 x+c$
28. Write an equation of a circle with a center: $(-9,5)$ and passes through the point: $(1,-2)$
29. Identify the center and radius: $(x+8)^{2}+(y-3)^{2}=169$
30. Fill in the blank: Opposite sides and angles of a parallelogram are \qquad .
31. The diagonals of a parallelogram \qquad each other.
32. Consecutive angles of a parallelogram add up to \qquad .
33. List the three ways triangles can be proven similar:
34. A surveyor 100 meters from the base of a cliff measures the angle of elevation to the top of the cliff as 107°. What is the height of the cliff?

At a point 180 feet from the base of the building, the angle of elevation to the fifth floor is 52° and to the tenth floor is 83°. How much higher is the tenth floor than the fifth floor?

A 32 foot ladder is placed against a wall at 62° with the ground. How far away from the wall is the base of the ladder?

A person at the top of a cliff 125 feet tall sees a boat in the water below. His sighting of the boat is at an angle of depression of 24°. How far is the boat from the base of the cliff?

A 47 inch goal post is leaning against a fence. If the post is 22 inches away from the base of thelfence, what angle is formed between the ground and the post?
35.
4.

5.

6.

7.

8.

9.

