$$(4 - 5i)(2 + i)$$

- 13
- 8 5*i*
- 13 6*i*
- 2. Subtract:

$$(7-6i)-(4+2i)$$

- 3 4i
- 11 4*i*
- 3 8*i*
- 40 10*i*
- 3. Simplify.

$$(3 + 8i) + (7 - 2i) - (6 - 5i)$$

- 16 + *i*
- 4+i  $4+11i^3$
- 4 + 11*i*
- 4. Divide and simplify:

- 5. What are the solutions to the equation  $2x^2 + 12x = 26$ ?
  - $x = -3 + \sqrt{22}$ ;  $x = -3 \sqrt{22}$

  - $x = -3 + \sqrt{35} ; x = -3 \sqrt{35}$   $x = -6 + 2\sqrt{13} ; x = -6 2\sqrt{13}$
  - $x = -6 + 7 \sqrt{2}$ ;  $x = -6 7 \sqrt{2}$
- 6. Simplify the expression.

$$3x^2 + 2x(x + 5) + 3(5 - x)$$

- $27x^2 x + 15$
- $5x^2 + 7x + 15$  $8x^2 + 10$
- $5x^2 x + 20$
- 7. Find one factor of:

$$2x^2 - 5x - 12$$

- (x + 3)
- Which of the following shows  $15x^2 + 17x 4$  factored completely? 8.
  - (15x 4)(x + 1)
  - (15x 2)(x + 2)
  - (5x + 4)(3x + 1)
  - (5x-1)(3x+4)
- 9. Which of the following quadratics has 2x - 3 as a factor?
  - $9x^2 4$
  - $4x^2 + 14x 30$
  - $2x^2 7x + 3$
  - $2x^2 9$

$$(-6x^2 - 5x - 4) - (-5x^2 + x - 7)$$

- $-x^{2} 6x 11$   $-x^{2} 4x 11$   $-x^{2} 4x + 3$   $-x^{2} 6x + 3$

- Simplify. 11.

$$(2x^3 + 3x^2 - x - 5) - (x^3 - 2x^2 + 5x - 1)$$

- $x^3 + x^2 6x 4$
- $x^3 + 5x^2 + 4x 6$
- $x^3 5x^2 + 4x 6$
- $x^3 + 5x^2 6x 4$
- Perform the operation. 12.

$$(3x^3 - 7x^2 + 5x - 2) + (2x^2 - 9x + 8)$$

- $3x^3 9x^2 + 14x 10$
- $3x^3 5x^2 4x + 6$
- $5x^5 16x^3 + 13x 2$
- $-14x^4 + 3x^3 45x^2 16$
- Perform the operation: 13.

$$(x-4)(4x^2-8x+7)$$

- $4x^3 24x^2 + 39x 28$
- $4x^{3} + 8x^{2} 25x + 28$   $-12x^{3} + 24x^{2} 21x$   $-12x^{2} + 24x 21$

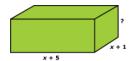
$$-(-3xy^2)^3(-2x^2y)^2$$

- $-108x^7y^8$

Which of the following quotients has a remainder? 15.

- x + 1 $x^4 + 5x^3 + 5x^2 5x 6$
- x 1 $x^4 + 5x^3 + 5x^2 5x 6$
- $(x + 2)x^4 + 5x^3 + 5x^2 5x 6$
- $x 2 x^4 + 5x^3 + 5x^2 5x 6$

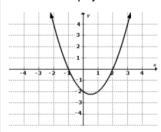
16. What is (x - 8)(x + 4) + (x - 3)(x + 9)?


- $x^2 2x 59$
- $x^2 + 2x 59$
- $2x^2 2x 59$
- $2x^2 + 2x 59$

Perform the operation: 17.

$$(2x^4 + 5x^3 + 8x + 24) \div (x + 2)$$

- $2x^2 + x + 6 + \frac{12}{x+2}$
- $2x^3 + 9x^2 + 18x + 44 + \frac{112}{x+2}$
- $2x^{3} + x^{2} 2x + 12$  $2x^{4} + x^{3} 2x^{2} + 12x$


18. The formula for the volume of a rectangular prism is V = Bh, where B is the area of the base and h is the height of the prism. If the rectangular prism shown below has a volume of  $V = 3x^3 + 8x^2 - 45x - 50$ , what expression represents the length of the unknown side?



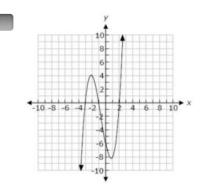
- -3x + 10
- 3x 10
- $3x 10 + \frac{100}{x^2 + 6x + 5}$
- $x^2 + 6x + 5$
- 19. Which of these is a factor of  $x^4 2x^3 13x^2 + 38x 24$ ?
  - X 4
  - x -
  - x + 2
  - \_\_\_\_
  - x + 3
- 20. Use the Remainder Theorem to find the remainder of  $(x^3 2x^2 + 3x 1) \div (x + 2)$ .
  - -23
  - -7
- 21. In order for x = 2 to be a factor of  $x^3 = 6x^2 + 11x = 6$ , the remainder of  $(x^3 = 6x^2 + 11x = 6) \div (x = 2)$  must be equal to which of the following values?
  - -6
  - -2

  - **1**

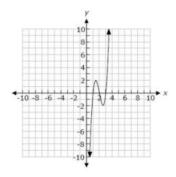
Which of these polynomial functions is graphed below?

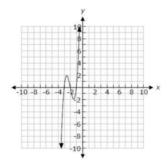


- $y = x^2 3x + 2$
- $y = x^2 x 2$
- $y = x^2 + x -$
- $y = x^2 + 3x + 3$


23. Roger factored a polynomial to determine that the zeros of the polynomial are located at x = -5, x = -2 and x = 3. Which of the following functions is the factored form of that polynomial?


- f(x) = (x + 5)(x + 2)(x + 3)
- f(x) = (x-5)(x-2)(x-3)
- f(x) = (x-5)(x-2)(x+3)
- f(x) = (x + 5)(x + 2)(x 3)


24. What are the zeros of a polynomial that is factored as f(x) = (x-4)(x-1)(x+3)?


- (0, -4), (0, -1) and (0, 3)
- (0, 4), (0, 1) and (0, -3)
- (-4, 0), (-1, 0) and (3, 0)
- (4, 0), (1, 0) and (-3, 0)

25. Identify the zeros of the factored polynomial y = (x - 3)(x - 1)(x + 2) to determine which of the following graphs represents the function.









James is working with the equation  $ax^2 + bx + c = 0$ . Which of the following will James be able to prove is the solution for x? 26.

$$x = -\frac{b}{2} \pm \sqrt{\frac{b - 2a}{2}}$$

$$x = -\frac{b}{2a} \pm \sqrt{\frac{b-2c}{2a}}$$

$$x = \frac{-b \pm \sqrt{b^2 - 4c}}{2}$$

$$x = -\frac{b}{2a} \pm \sqrt{\frac{b - 2c}{2a}}$$

$$x = \frac{-b \pm \sqrt{b^2 - 4c}}{2}$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$\frac{2x^2 + 9x + 9}{x^2 - 6x - 27}$$

$$\frac{2x+3}{x-9}$$

28.

How do you write the sum in simplest form?

$$\frac{2x+1}{2x^2} + \frac{-1}{10x}$$

$$\frac{1}{10x}$$

$$\frac{2x}{12x^3}$$

$$\frac{9x+5}{10x^2}$$

How do you write the difference in simplest form?

29.

$$\frac{1}{x+3} - \frac{6}{x-3}$$

$$\frac{-5x-2}{3}$$

$$x^2 - 9$$
 $-5x - 2$ 

Simplify:

$$\frac{x^2 - 2x - 8}{x^2 + 2x - 15}$$

$$\frac{x^2 - 16}{x^2 - 5x + 6}$$

$$\frac{x^2 - 4}{x^2 + 6x + 6}$$

$$\frac{(x+2)(x+4)(x-4)^2}{(x-2)(x-3)^2(x+5)}$$

$$\frac{(x+2)(x+6)(x-1)}{(x+4)(x-3)(x+5)}$$

$$\frac{x^2 - 4x + 4}{x^2 + 9x + 20}$$

31.

 $y = -2x^2 + 4x + 1$ 

Find the vertex for the graph of the above equation and identity whether it is a maximum or a minimum.

- (-1, -5), minimum
- (1, 3), minimum
- (1, 3), maximum
- (-1,-5), maximum

32. A scientist launched an object upward at a speed of 32 ft per second from a height of 240 feet. The height of the object is modeled by the equation  $h = 240 + 32t - 16t^2$ . After how much time will the object hit the ground?

- 3 seconds
- 5 seconds
- 12 seconds
- 20 seconds