Convert to logarithmic or exponential form:

Write each equation in exponential form.

13.
$$\log_2 16 = 4$$
14. $\log_7 343 = 3$ **15.** $\log_9 \frac{1}{81} = -2$ **16.** $\log_3 \frac{1}{27} = -3$ **17.** $\log_{12} 144 = 2$ **18.** $\log_9 1 = 0$

Write each equation in logarithmic form.

19.
$$9^{-1} = \frac{1}{9}$$
20. $6^{-3} = \frac{1}{216}$ **21.** $2^8 = 256$ **22.** $4^6 = 4096$ **23.** $27^{\frac{2}{3}} = 9$ **24.** $25^{\frac{3}{2}} = 125$

Evaluate each logarithmic expression using Change of Base Formula {or mental math}:

Evaluate each expression.

25.
$$\log_3 \frac{1}{9}$$
26. $\log_4 \frac{1}{64}$
27. $\log_8 512$
28. $\log_6 216$
29. $\log_{27} 3$
30. $\log_{32} 2$
31. $\log_9 3$
32. $\log_{121} 11$
33. $\log_{\frac{1}{5}} 3125$
34. $\log_{\frac{1}{8}} 512$
35. $\log_{\frac{1}{3}} \frac{1}{81}$
36. $\log_{\frac{1}{6}} \frac{1}{216}$

Solving basic logarithmic equations:

.

 1. $\log_4(7 - 8x) = 5$ 2. $\log_5(4x - 1) = 3$ 3. $\log_3(x - 17) = 3$ 4. $\log_8(4 + 5x) = 2$

 8. $\log_{81} x = \frac{3}{4}$ 9. $\log_{25} x = \frac{5}{2}$ 10. $\log_8 \frac{1}{2} = x$

 11. $\log_6 \frac{1}{36} = x$ 12. $\log_x 32 = \frac{5}{2}$ 13. $\log_x 27 = \frac{3}{2}$

Solving exponential equations by finding common bases:

1.
$$3^{5x} = 27^{2x-4}$$
2. $16^{2y-3} = 4^{y+1}$
3. $2^{6x} = 32^{x-2}$
4. $49^{x+5} = 7^{8x-6}$

Solving exponential equations using common logarithms:

23. $8^x = 40$ **41.** $3^x = 40$ **42.** $5^{3p} = 15$ **25.** $2.9^{a-4} = 8.1$ **43.** $4^{n+2} = 14.5$ **44.** $8^{z-4} = 6.3$ **27.** $13^{x^2} = 33.3$ **45.** $7.4^{n-3} = 32.5$ **46.** $3.1^{y-5} = 9.2$

Solving exponential equations using natural logarithms or base *e*:

.

34. $6e^x - 3 = 35$	35. $4e^x + 2 = 180$	36. $3e^{2x} - 5 = -4$
37. $-2e^{3x} + 19 = 3$	38. $6e^{4x} + 7 = 4$	39. $-4e^{-x} + 9 = 2$
5A. $5 \ln 6x = 8$	25. $\ln(x+4) = 36$	$\ln 2x = 6$

You can model exponential growth with a constant percent increase over specific time periods using the following function.

 $A(t) = a(1+r)^t$

KeyConcept Compound Interest

You can calculate compound interest using the following formula. $A = p(1 + f)^{nt}$

$$A = P\left(1 + \frac{r}{n}\right)^n$$

where A is the amount in the account after t years, P is the principal amount invested, r is the annual interest rate, and n is the number of compounding periods each year.

Similar to exponential growth, you can model exponential decay with a constant percent of decrease over specific time periods using the following function.

 $A(t) = a(1 - r)^{t}$

An investment account pays 4.2% annual interest compounded monthly. If \$2500 is invested in this account, what will be the balance after 15 years?

- . Find the balance of an account after 7 years if \$700 is deposited into an account paying 4.3% interest compounded monthly.
- Determine how much is in a retirement account after 20 years if \$5000 was invested at 6.05% interest compounded weekly.
- A savings account offers 0.7% interest compounded bimonthly. If \$110 is deposited in this account, what will the balance be after 15 years?
- A college savings account pays 13.2% annual interest compounded semiannually. What is the balance of an account after 12 years if \$21,000 was initially deposited?

FINANCIAL LITERACY When Angelina was born, her grandparents deposited \$3000 into a college savings account paying 4% interest compounded continuously.

a. Assuming there are no deposits or withdrawals from the account, what will the balance be after 10 years?

If they invested \$8000 at 3.75% interest compounded continuously, how much money would be in the account in 30 years?

If they could only deposit \$10,000 in the account above, at what rate would the account need to grow in order for Angelina to have \$30,000 in 18 years?

If Angelina's grandparents found an account that paid 5% compounded continuously and wanted her to have \$30,000 after 18 years, how much would they need to deposit?

- **FINANCIAL LITERACY** The value of a certain car depreciates according to $v(t) = 18500e^{-0.186t}$, where *t* is the number of years after the car is purchased new.
- a. What will the car be worth in 18 months?
- b. When will the car be worth half of its original value?
- c. When will the car be worth less than \$1000?

CARS Abe bought a used car for \$2500. It is expected to depreciate at a rate of 25% per year. What will be the value of the car in 3 years?

BIOLOGY For a certain strain of bacteria, *k* is 0.728 when *t* is measured in days. Using the formula $y = ae^{kt}$, how long will it take 10 bacteria to increase to 675 bacteria?

POPULATION The population of a city 20 years ago was 24,330. Since then, the population has increased at a steady rate each year. If the population is currently 55,250, find the annual rate of growth for this city.

SAVINGS You deposited \$1000 into an account that pays an annual interest rate *r* of 5% compounded quarterly. Use $A = P(1 + \frac{r}{n})^{nt}$.

- a. How long will it take until you have \$1500 in your account?
- b. How long it will take for your money to double?

Classwork/Homework:

) FINANCIAL LITERACY Use the formula for continuously compounded interest.

- a. If you deposited \$800 in an account paying 4.5% interest compounded continuously, how much money would be in the account in 5 years?
- b. How long would it take you to double your money?
- c. If you want to double your money in 9 years, what rate would you need?
- d. If you want to open an account that pays 4.75% interest compounded continuously and have \$10,000 in the account 12 years after your deposit, how much would you need to deposit?

BIOLOGY A certain bacteria is growing exponentially according to the model $y = 80e^{kt}$, where *t* is the time in minutes.

- a. If there are 80 cells initially and 675 cells after 30 minutes, find the value of k for the bacteria.
- b. When will the bacteria reach a population of 6000 cells?

A certain culture of bacteria will grow from 250 to 2000 bacteria in 1.5 hours. Find the constant k for the growth formula. Use $y = ae^{kt}$.

POPULATION The population of a city 10 years ago was 150,000. Since then, the population has increased at a steady rate each year. The population is currently 185,000.

- Write an exponential function that could be used to model the population after x years if the population changes at the same rate.
- b. What will the population be in 25 years?
- i. AGRICULTURE An equation that models the decline in the number of U.S. farms is $y = 3,962,520(0.98)^x$, where x is the number of years since 1960 and y is the number of farms.
 - a. How can you tell that the number is declining?
 - **b.** By what annual rate is the number declining?
 - **c.** Predict when the number of farms will be less than 1 million.

SAVINGS You put \$7500 in a savings account paying 3% interest compounded continuously.

- a. Assuming there are no deposits or withdrawals from the account, what is the balance after 5 years?
- b. How long will it take your savings to double?
- c. In how many years will you have \$10,000 in your account?

Jason recently purchased a new truck for \$34,750. The value of the truck decreases by 12% each year. What will the approximate value of the truck be 7 years after Jason purchased it?

- A \$13,775
- **B** \$13,890
- C \$14,125
- **D** \$14,200

Sevence product Property of Logarithms	
Words	The logarithm of a product is the sum of the logarithms of its factors.
Symbols	For all positive numbers a, b, and x, where $x \neq 1$, $\log_x ab = \log_x a + \log_x b$.
Example	$\log_2 \left[(5)(6) \right] = \log_2 5 + \log_2 6$

Sevent and the sevent sevents of Logarithms		
Words	The logarithm of a quotient is the difference of the logarithms of the numerator and the denominator.	
Symbols	For all positive numbers <i>a</i> , <i>b</i> , and <i>x</i> , where $x \neq 1$, $\log_x \frac{a}{b} = \log_x a - \log_x b$.	
Example	$\log_2 \frac{5}{6} = \log_2 5 - \log_2 6$	
🦃 Key(Concept Power Property of Logarithms	

	Words	The logarithm of a power is the product of the logarithm and the exponent.
	Symbols	For any real number p , and positive numbers m and b , where $b \neq 1$, $\log_b m^p = p \log_b m$.
	Example	$\log_2 6^5 = 5 \log_2 6$

Solve each equation. Check your solutions.

23. $\log_3 56 - \log_3 n = \log_3 7$	24. $\log_2(4x) + \log_2 5 = \log_2 40$
25. $5 \log_2 x = \log_2 32$	26. $\log_{10} a + \log_{10} (a + 21) = 2$

Solve each equation. Check your solutions.

36. $\log_3 6 + \log_3 x = \log_3 12$	37. $\log_4 a + \log_4 8 = \log_4 24$
38. $\log_{10} 18 - \log_{10} 3x = \log_{10} 2$	39. $\log_7 100 - \log_7 (y + 5) = \log_7 10$
40. $\log_2 n = \frac{1}{3} \log_2 27 + \log_2 36$	41. $3 \log_{10} 8 - \frac{1}{2} \log_{10} 36 = \log_{10} x$

ANSWERS BELOW:

23.	24.	25.	26.
36.	37.	38.	39.
40.	41.		