- 4. Find the next four terms of the arithmetic sequence 42, 37, 32,
- Find the 27th term of an arithmetic sequence for which a₁ = 2 and d = 6.
- 7. Find the sum of the arithmetic series for which $a_1 = 7$, n = 31, and $a_n = 127$.
- 8. Find the next two terms of the geometric sequence $\frac{1}{81}$, $\frac{1}{27}$, $\frac{1}{9}$, ...
- Find the sixth term of the geometric sequence for which a₁ = 5 and r = −2.
 - 11. Find the sum of the geometric series for which $a_1 = 125$, $r = \frac{2}{5}$, and n = 4.

Find the sum of each series, if it exists.

12.
$$\sum_{k=2}^{15} (14-2k)$$

13.
$$\sum_{n=1}^{\infty} \frac{1}{3} (-2)^n = 1$$

12.
$$\sum_{k=3}^{15} (14-2k)$$
 13. $\sum_{n=1}^{\infty} \frac{1}{3} (-2)^{n-1}$ 14. $91+85+79+...+(-29)$ 15. $12+(-6)+3-\frac{3}{2}+...$

Find the sum of each geometric series. (Lessons 11-4 and 11-5)

1.
$$a_1 = 5, r = 3, n = 12$$

$$a_1 = 5, r = 3, n = 12$$

3.
$$\sum_{n=1}^{\infty} 8\left(\frac{2}{3}\right)^{n-1}$$

2.
$$\sum_{n=1}^{6} 2(-3)^{n-1}$$

4.
$$5+1+\frac{1}{5}+...$$

Find the sum of each arithmetic series.

33.
$$\sum_{n=1}^{6} (2n+11)$$

34.
$$\sum_{n=1}^{5} (2-3n)$$

35.
$$\sum_{k=7}^{11} (42 - 9k)$$

36.
$$\sum_{t=19}^{23} (5t-3)$$
 37. $\sum_{i=1}^{300} (7i-3)$

37.
$$\sum_{i=1}^{300} (7i - 3)^{i}$$

38.
$$\sum_{k=1}^{150} (11 + 2k)$$